PERSPECTIVE: Here’s a light-hearted look at the serious world of communications for the police officers, utilities crews, emergency medical people, fire crews and many others who keep our civilization up and running. John Carter, Senior Design Engineer at Tait, advocates for these day-to-day heroes. He dons a virtual hard-hat/helmet/cap as he helps to develop new ways to bring them information – simply, seamlessly and without impacting on their duties

Whatever industry or sector they are involved in, these are the people who operate the core systems that hold our civilization... Continue Reading

The Conducted Emissions performance of a transmitter is basically the ratio in dB of how far down any unwanted outputs are with respect to the wanted signal at the antenna connector.

As we have seen previously, unwanted frequencies can be present on the output of the transmitter for a number of reasons. Noise on DC Power supplies is one reason, but by far the most common and strongest unwanted products are the harmonics produced by the Transmitter itself. Harmonics are simply integer multiples of the wanted frequency, and are produced because the... Continue Reading

Did you know that Tait offers a large range of colored portable radios? It happens to be one of our favorite safety features. It is a simple thing, but it can provide several benefits to mission critical organizations:

1. Easy Identification
For large organizations with multiple portable fleets operating at any given time, you can help ensure users grab the correct radio for each scenario by giving them color codes. Need to connect with a specific work group? Grab the red one. Need to communicate with a unique Talk Group? Grab an orange radio. If your fleet requires multiple configurations or... Continue Reading

As discussed in our previous blog post, the Transient Adjacent Channel Power (TACP) is simply an extension of the ratio of the energy produced in the wanted and adjacent channels when the Transmitter is keyed up or down. In reality, the unwanted energy produced by the Transmitter doesn’t just spread into the adjacent channel, it also spreads out far beyond that point. Tx Noise, therefore, is a measure of the unwanted transmitted energy at some specified offset from the wanted frequency.

Eventually, as we go further and further away from the carrier, the... Continue Reading

Great news everyone! The Tait Radio Academy has launched another new course: Introduction to Intrinsically Safe Radios.

A number of different standards worldwide help guide manufacturers, purchasers and users in the design, manufacture, selection and operation of IS radios. This course will help you to interpret these standards, based on their location in the world, and the environment under which the IS radios will be used.

The course contains 7 different videos, all taught by Stuart Colsell, a Senior Systems Engineer at Tait... Continue Reading

Adjacent Channel Power (ACP) is basically the ratio of the energy produced in the wanted and adjacent channels when the Transmitter is in steady state mode. Transient Adjacent Channel Power (TACP) is simply an extension of this, being the ratio of the energy produced in the wanted and adjacent channels when the Transmitter is keyed up or down. Transient ACP is measured in the frequency domain. A related parameter “Transient Behaviour” is measured in the time domain.

When the transmitter is keyed up or down (in other words, the user... Continue Reading

Before explaining Adjacent channel power, it is necessary to make mention of Electrical Noise. This subject will be covered more deeply later, but for now understand simply that noise, as it relates to communications systems, is defined as an unwanted random fluctuation in an electrical signal.

As we have seen previously, the Tx signal is produced by a locked oscillator within the Synthesizer. However, the output produced by such oscillators is not totally “clean.” That is to say that it does not just contain energy at the wanted frequency (the... Continue Reading

The Frequency Stability of a Transmitter is a measure of how close the actual frequency transmitted is to the wanted.

Frequency Stability is directly determined by the Crystal Oscillator, as all frequencies produced in the Synthesizer are locked to this reference. Frequency Stability is generally quoted in Parts per Million (ppm) but can sometimes be quoted as a discrete number of Hertz (Hz). The difference between the wanted frequency and that actually produced is known as the Frequency Error or Frequency Drift.

To illustrate this, consider the diagram... Continue Reading

We’re at the end of a 3 part series on RF Performance with Ian Graham, Principal Engineer for the Systems Engineering group. In the first video, Ian defined the different specifications for RF Performance. In the second video, he discussed RF performance for Transmitters.

In this final video, Ian defines the specifications of receivers. Ian delves into the desired performance aspects, regulations, and system costs. Ian also talks about the benefits a customer will receive by choosing a system that supports better RF performance, and how to identify that performance in... Continue Reading

We’re in the middle of a 3 part series on RF Performance with Ian Graham, Principal Engineer for the Systems Engineering group. In the first video, Ian defined the different specifications for RF Performance, such as reliability vs cost, the minimum acceptable performance by the regulatory authorities, and how Tait exceeds these levels of performance.

Today we’ve got video two of the series, where Ian explains the key RF specifications for transmitters. In this video, Ian delves into adjacent channel power and how sideband noise can affect neighboring receivers,... Continue Reading